Novel approach combines imaging and electroanatomical mapping for targeted cardiac gene transfer

Gene therapy to repair damaged heart muscle is most likely to succeed if it can be injected at the site of ischemia where there is viable myocardium with reduced contractile ability, and a new technique that combines imaging and electroanatomical mapping does just that. A study of this novel approach that shows increased blood flow in treated areas in patients with refractory angina is published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers (http://www.liebertpub.com/).

Seppo Ylä-Herttuala, Kuopio University Hospital and University of Eastern Finland (Kuopio, Finland), together with coauthors Antti Kivelä, Antti Hedman, and Juha Hartikainen, and Antti Saraste and Juhani Knuuti, from Turku University Hospital, Finland, describe their method for targeted cardiac gene transfer in the article entitled "Intramyocardial Gene Therapy Directed to Hibernating Heart Muscle Using a Combination of Electromechanical Mapping and Positron Emission Tomography (http://online.liebertpub.com/doi/full/10.1089/hum.2016.131)."

The researchers use a combination of electromechanical mapping with a NOGA system and positron emission tomography (PET) radiowater perfusion imaging to create 2-dimensional bull's eye maps that guide the injection of the gene therapy into the heart muscle. They target a site that has suffered ischemic damage, but is viable as shown by reduced contractile ability, to achieve the best possible outcome.

"Dr. Ylä-Herttualla's milestone clinical trial results demonstrate how gene therapy for heart disease can be rendered much more specific," says Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Worcester, MA.

Source: Mary Ann Liebert, Inc., Publishers

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post
You might also like...
Role of the transketolase-like 1 gene in the development of the modern human brain