CSIC researchers make breakthrough in battle against superbugs

NewsGuard 100/100 Score

A team led by researchers from the Spanish National Research Council (CSIC) has made an important breakthrough in the battle against superbugs and their resistance to multiple drugs. Scientists have designed molecules which can break the cellular mechanisms which lead these bacteria to becoming unaffected by conventional antibiotics. The results of this discovery are published in the latest issue of the journal, Cell.

Superbugs are strains of bacteria resistant to several types of antibiotics. Their main characteristic is their ability to mutate their DNA from one generation to the next, making themselves resistant to the most common antibiotics. This has been abetted by other factors such as the imprudent and indiscriminate use of these medications- mainly through not completing the full treatment period, and self-medication.

The research was carried out in vivo on mice and on the bacterium Staphylococcus aureus- one of the most life-threatening strains given its resistance to methicillin (a common antibiotic, in the penicillin group), especially in hospital environments. According to the World Health Organization, people infected with this resistant strain are 64% more likely to die than those infected with non-resistant strains.

The work focused on directly attacking those areas of the bacteria where the proteins assemble to form complexes. "These microdomains in the cell membrane- called lipid rafts- are crucial because they form many protein complexes related to resistance to antibiotics", says Daniel López, researcher at CSIC's National Centre for Biotechnology.

Sophisticated cellular organization

To date, bacteria had not been shown to have the complex cellular organization based on assembly platforms which are present in eukaryotic (animal, plant and fungal) cells. In these areas of the cell membrane, the proteins responsible for forming large complexes do so really efficiently. López adds, "If they are confined to these tiny farms, the formation of molecular complexes important for the physiology of the bacteria is successfully achieved".

After characterization of the bacterium's proteins and lipids using, amongst other things, advanced techniques such as cryotomography, the researchers chose a group of molecules capable of disassembling the lipid rafts. Many of these molecules are the same as those prescribed, in certain cases, to treat high cholesterol.

"Since we know that many of the proteins related to antibiotic resistance are assembled in these microdomains, what we have done is to generate a strategy to break them down and to attempt to eliminate their resistance. The molecules we have designed make all these proteins stop working and become disorganized. In short, they succeed in making a resistant bacteria stop being resistant", points out the CSIC researcher.

Combined treatment

The researchers propose using these molecules in combination with methicillin in the treatment of invasive infections by superbugs. As Lopez explains, "Firstly, resistance would be disassembled before aiming a direct attack on the bacteria with a common antibiotic. It's interesting because the option now becomes open to us to combat superbugs using an entirely new approach."

According to the scientists, the work offers a new lease of life to conventional antibiotics in the fight against superbugs, provided they are always used in combination with the molecules they have created. "With this, mortality caused by invasive infections would be reduced", adds the CSIC researcher.

But what if the bacteria were to mutate once again, building resistance to this new treatment? According to López, the chances of that happening are remote since eliminating the lipid rafts "takes away biological pressure on the bacteria to change. That is, it does not affect their survival and, therefore, they do not undergo the changes that would generate resistance".

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Hospital sinks fuel antibiotic-resistant bacteria spread