Tumor growth traits can influence response to cancer drugs, study finds

NewsGuard 100/100 Score

Individual tumors respond differently to cancer drugs, if at all. Until now, it remained a mystery why tumors have different reactions to the exact same therapy. But a new study at the USC Viterbi School of Engineering finds that tumor growth properties can influence response to cancer drugs.

"Identifying a measurement or quantity that predicts how specific tumors will respond, called a predictive biomarker, is extremely valuable to cancer research," said Stacey Finley, a USC assistant professor of Biomedical Engineering and co-author to the study. Finley, a Gordon S. Marshall Early Career Chair, is also a faculty member of the new USC Michelson Center for Convergent Bioscience.

Tumors exploit a biological process called angiogenesis, which is the formation of new blood vessels from pre-existing ones. In order to grow and multiply, tumors source nutrients delivered by this new vasculature. But tumor growth will slow down if proteins like vascular endothelial growth factor (VEGF), an angiogenesis promoter, are waylaid.

The research team used a computational model of tumor-bearing mice (verified by published experimental data) to investigate response to VEGF-inhibiting drugs and how this response is affected by tumor development. The model illuminated that certain properties of tumor growth help forecast whether drug therapy will thwart tumor expansion.

"We found that certain parameters about the way the tumor grows could successfully and accurately predict the response to anti-angiogenic treatment that inhibits VEGF signaling in the mouse," Finley said. "Using the characteristics of the tumor's growth, we can predict how effective the anti-angiogenic therapy will be, or whether the tumor's growth will slow down, even before treatment begins."

A next step in the research includes a mathematical model to simulate a virtual population of mice randomly assigned different tumor growth parameters. The model will mimic tumor growth with and without drug therapy- and be able to predict mice who respond to drug therapy (resulting in slower tumor growth) and mice with no effect. The research team will further use experimental data to validate the model's predictions.

Source: https://www.usc.edu/

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Liver cells effectively serve as immune checkpoint regulating anti-cancer immunity