New approach involves "antivitamins" to develop new classes of antibiotics

NewsGuard 100/100 Score

Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago. Many diseases caused by bacterial infections - such as pneumonia, meningitis, or septicaemia - are successfully treated with antibiotics.

However, bacteria can develop resistance to antibiotics which then leaves doctors struggling to find effective treatments. Particularly problematic are pathogens that develop multi-drug resistance and are unaffected by most antibiotics.

This leads to severe disease progression in affected patients, often with a fatal outcome. Scientists all over the world are therefore engaged in the search for new antibiotics. Researchers at the University of Göttingen and the Max Planck Institute for Biophysical Chemistry Göttingen have now described a promising new approach involving "antivitamins" to develop new classes of antibiotics. The results were published in the journal Nature Chemical Biology.

Antivitamins are substances that inhibit the biological function of a genuine vitamin. Some antivitamins have a similar chemical structure to those of the actual vitamin whose action they block or restrict.

For this study, Professor Kai Tittmann's team from the Göttingen Center for Molecular Biosciences at the University of Göttingen worked together with Professor Bert de Groot's group from the Max Planck Institute for Biophysical Chemistry Göttingen and Professor Tadgh Begley from Texas A&M University (USA).

Together they investigated the mechanism of action at the atomic level of a naturally occurring antivitamin of vitamin B1. Some bacteria are able to produce a toxic form of this vital vitamin B1 to kill competing bacteria. This particular antivitamin has only a single atom in addition to the natural vitamin in a seemingly unimportant place and the exciting research question was why the action of the vitamin was still prevented or "poisoned".

Tittmann's team used high-resolution protein crystallography to investigate how the antivitamin inhibits an important protein from the central metabolism of bacteria. The researchers found that the "dance of the protons", which can normally be observed in functioning proteins, almost completely ceases to function and the protein no longer works.

Just one extra atom in the antivitamin acts like a grain of sand in a complex gear system by blocking its finely tuned mechanics."

Kai Tittmann, Professor, Center for Molecular Biosciences, University of Göttingen

It is interesting to note that human proteins are able to cope relatively well with the antivitamin and continue working. The chemist de Groot and his team used computer simulations to find out why this is so.

"The human proteins either do not bind to the antivitamin at all or in such a way that they are not 'poisoned'," says the Max Planck researcher.

The difference between the effects of the antivitamin on bacteria and on human proteins opens up the possibility of using it as an antibiotic in the future and thus creating new therapeutic alternatives.

Source:
Journal reference:

Pappenheim, F, R, V., et al. Structural basis for antibiotic action of the B1 antivitamin 2′-methoxy-thiamine. Nature Chemical Biology. doi.org/10.1038/s41589-020-0628-4.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals deadly bacteria's attraction to human blood