Novel AI-based system models the progression of chronic diseases as patients age

NewsGuard 100/100 Score

Using artificial intelligence, a team of University at Buffalo researchers has developed a novel system that models the progression of chronic diseases as patients age.

Published in Oct. in the Journal of Pharmacokinetics and Pharmacodynamics, the model assesses metabolic and cardiovascular biomarkers – measurable biological processes such as cholesterol levels, body mass index, glucose and blood pressure – to calculate health status and disease risks across a patient's lifespan.

The findings are critical due to the increased risk of developing metabolic and cardiovascular diseases with aging, a process that has adverse effects on cellular, psychological and behavioral processes.

There is an unmet need for scalable approaches that can provide guidance for pharmaceutical care across the lifespan in the presence of aging and chronic co-morbidities. This knowledge gap may be potentially bridged by innovative disease progression modeling."

Murali Ramanathan, PhD, lead author, professor of pharmaceutical sciences, UB School of Pharmacy and Pharmaceutical Sciences

The model could facilitate the assessment of long-term chronic drug therapies, and help clinicians monitor treatment responses for conditions such as diabetes, high cholesterol and high blood pressure, which become more frequent with age, says Ramanathan.

Additional investigators include first author and UB School of Pharmacy and Pharmaceutical Sciences alumnus Mason McComb, PhD; Rachael Hageman Blair, PhD, associate professor of biostatistics in the UB School of Public Health and Health Professions; and Martin Lysy, PhD, associate professor of statistics and actuarial science at the University of Waterloo.

The research examined data from three case studies within the third National Health and Nutrition Examination Survey (NHANES) that assessed the metabolic and cardiovascular biomarkers of nearly 40,000 people in the United States.

Biomarkers, which also include measurements such as temperature, body weight and height, are used to diagnose, treat and monitor overall health and numerous diseases.

The researchers examined seven metabolic biomarkers: body mass index, waist-to-hip ratio, total cholesterol, high-density lipoprotein cholesterol, triglycerides, glucose and glycohemoglobin. The cardiovascular biomarkers examined include systolic and diastolic blood pressure, pulse rate and homocysteine.

By analyzing changes in metabolic and cardiovascular biomarkers, the model "learns" how aging affects these measurements. With machine learning, the system uses a memory of previous biomarker levels to predict future measurements, which ultimately reveal how metabolic and cardiovascular diseases progress over time.

Source:
Journal reference:

McComb, M., et al. (2021) Machine learning-guided, big data-enabled, biomarker-based systems pharmacology: modeling the stochasticity of natural history and disease progression. Journal of Pharmacokinetics and Pharmacodynamics. doi.org/10.1007/s10928-021-09786-5.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Penn State study examines how a person's telomeres are affected by caloric restriction