SARS-CoV-2 Omicron variant highly resistant to vaccine-elicited and therapeutic antibodies

NewsGuard 100/100 Score

In a recent study published on the bioRxiv* preprint server, researchers analyzed convalescent sera and sera from fully immunized individuals to demonstrate the evasion of vaccine-elicited antibodies and neutralizing monoclonal antibody (MAb) therapeutics by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant.

Study: Increased resistance of SARS-CoV-2 Omicron Variant to Neutralization by Vaccine-Elicited and Therapeutic Antibodies. Image Credit: FamVeld / Shutterstock.com

Study: Increased resistance of SARS-CoV-2 Omicron Variant to Neutralization by Vaccine-Elicited and Therapeutic Antibodies. Image Credit: FamVeld / Shutterstock.com

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

Several coronavirus disease 2019 (COVID-19) vaccines have been granted emergency use authorization (EUA) in many countries around the world. Some of these vaccines include the Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273 vaccines, both of which have been highly effective against SARS-CoV-2 infection.

In addition to vaccination, MAb cocktails from Regeneron consisting of REGN10933 (Casirivamab) and REGN10987 (Imdevimab), as well as those produced by Eli Lilly consisting of LY-CoV016 (Etesevimab) and LY-CoV555 (Bamlanivimab) have substantially decreased infection rates and COVID-19-related hospitalization and deaths.

However, the newly emerged SARS-CoV-2 Omicron (B.1.1.529) variant of concern (VOC) is likely unfazed by the effectiveness of currently approved COVID-19 vaccines and MAbs. This is largely due to the fact that the Omicron variant has 34 mutations in its spike (S) protein, 20 of which have never been seen in previous VOCs or variants of interests (VOIs).

The 15 mutations in the Omicron receptor-binding domain (RBD), as well as the eight in the amino-terminal domain (NTD) and 10 in the carboxy-terminal (CTD), are the most concerning mutations, all of which are the primary sites targeted by neutralizing antibodies (NAbs).

About the study

In the current study, researchers collected human sera samples from consenting participants at the New York University (NYU) Vaccine Center in the United States. Convalescent sera and sera from BNT162b2 and mRNA-1273-vaccinated participants were collected 32-57 days post-symptom onset, and 90 and 80 days mean post-second immunization, respectively.

Serum samples from participants previously infected and subsequently vaccinated with the BNT162b2 messenger ribonucleic acid (mRNA) vaccine were collected one month and seven-eight months post-second immunization. Sera were also collected from individuals vaccinated with the BNT162b2 booster dose one-month post-vaccination.

The researchers measured the neutralizing antibody titers in sera from both naïve and convalescent study participants and also analyzed the neutralizing activity of several widely used therapeutic MAbs. The expression vector pc.Δ19.Omicron encoding SARS-CoV-2 Omicron S proteins were chemically synthesized. Further, individual S mutations were generated by polymerase chain reaction (PCR) mutagenesis using the D614G S protein plasmid pcCOV2.Δ19.D614G as a template.

Study findings

Although the sera of unvaccinated participants showed moderately reduced antibody titers against the SARS-CoV-2 Beta and Delta variants as compared to the parental D614G, there was an average 26-fold reduction in titers against the Omicron variant.

Sera collected 70 days post-immunization from study participants who received two doses of BNT162b2 or mRNA-1273 vaccines showed 3-4-fold higher titers against the D614G strain as compared to convalescent sera. However, antibody titers against the Omicron variant decreased 26-34-fold compared to D614G.

One-month after the participants had received their second vaccine dose who had not experienced a previous infection had high titers against the D614G strain. Comparatively, titers against the Beta, Delta, and Omicron variants decreased 2.8-fold, 1.4-fold, and 18-fold, respectively.

Neutralizing antibody titers were also found to decline 7-8 months post-immunization but increased for all variants one-month post-booster dose. The study participants who had poor antibody titers against the Omicron variant after two immunizations had increased their titers following the booster dose; however, titers remained 14-fold lower as compared to when challenged with the D614G strain.

Decreased neutralization of Omicron spike protein-pseudotyped viruses by convalescent sera, mRNA vaccine-elicited antibodies.

While all MAbs and MAb cocktails investigated in this study showed weak or no activity against the Omicron variant, VIR-7831 (Sotrovimab) was active against Omicron with its inhibitory concentration of 50% (IC50) that was about 172-fold lower than against D614G. Although its neutralizing activity decreased in treated patients, VIR-7831 achieved an antibody concentration of 24 μg/ml following a 500 mg dose. It is worth noting that a decreased MAb inhibitory activity increases the IC50.

The neutralizing activity of REGN10933 and REGN10987 was affected by mutations K417N, 217 E484A, Q493K, and S371L, S373P, N440K, G446S. However, their cocktail maintained neutralization potency against the single-point mutated virus.

Bamlanivimab inhibitory activity was abolished by E484A and Q493K mutations, while several other mutations had minor effects. Except for the E484A mutation, most other mutations had moderate effects on neutralizing titers, thereby suggesting that the loss of activity of the MAbs was due to the combined effect of all Omicron S mutations.

Therapeutic monoclonal antibodies have lost neutralizing activity against virus with the Omicron spike protein.

Conclusions

The current study findings highlight the benefits of booster immunization with an mRNA vaccine and the need to develop more effective MAb therapeutics for COVID-19 treatment.

While the pseudotyped lentivirus with the Omicron S protein showed about 2,640-fold increased resistance, the Alpha, Beta, Gamma, and Delta VOCs showed only 3-4-fold resistance to vaccine-elicited antibodies.

The researchers predicted antibody titers of study participants fully vaccinated with BNT162b2 or Moderna-1273 to cause an increased frequency of breakthrough infections (BTIs). Interestingly, the study findings showed that the BNT162b2 vaccine increased titers against Omicron to highly protective levels, yet the antibody titers remained about 10-fold below those against other VOCs post-booster. Furthermore, the durability of these titer values remains undetermined.

To summarize, the study findings suggest that the frequency of Omicron-induced infections is likely to increase; however, vaccination with two doses followed by a homologous booster immunization will increase antibody titers almost five-fold, thereby providing protection against severe COVID-19. The vaccination-induced T-cell response may also provide additional protection.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 10 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, May 10). SARS-CoV-2 Omicron variant highly resistant to vaccine-elicited and therapeutic antibodies. News-Medical. Retrieved on April 18, 2024 from https://www.news-medical.net/news/20220103/SARS-CoV-2-Omicron-variant-highly-resistant-to-vaccine-elicited-and-therapeutic-antibodies.aspx.

  • MLA

    Mathur, Neha. "SARS-CoV-2 Omicron variant highly resistant to vaccine-elicited and therapeutic antibodies". News-Medical. 18 April 2024. <https://www.news-medical.net/news/20220103/SARS-CoV-2-Omicron-variant-highly-resistant-to-vaccine-elicited-and-therapeutic-antibodies.aspx>.

  • Chicago

    Mathur, Neha. "SARS-CoV-2 Omicron variant highly resistant to vaccine-elicited and therapeutic antibodies". News-Medical. https://www.news-medical.net/news/20220103/SARS-CoV-2-Omicron-variant-highly-resistant-to-vaccine-elicited-and-therapeutic-antibodies.aspx. (accessed April 18, 2024).

  • Harvard

    Mathur, Neha. 2023. SARS-CoV-2 Omicron variant highly resistant to vaccine-elicited and therapeutic antibodies. News-Medical, viewed 18 April 2024, https://www.news-medical.net/news/20220103/SARS-CoV-2-Omicron-variant-highly-resistant-to-vaccine-elicited-and-therapeutic-antibodies.aspx.

Comments

  1. Trecia Van Der Walt Trecia Van Der Walt South Africa says:

    Interesting

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nigeria first to rollout new Men5CV vaccine against meningitis