Combining AI and neuroscience to detect and predict neurological disorders

In a recent article published in the journal Sensors, researchers perform a scoping review on the shared relationship between artificial intelligence (AI) and neuroscience, emphasizing their convergence and possible applications.

The researchers extensively searched existing literature relevant to the objective of this review. As a result, the final dataset comprised 185 publications, 173 of which were from scientific databases, and the remaining 12 were hyperlink references from Google.

Study: Convergence of Artificial Intelligence and Neuroscience towards the Diagnosis of Neurological Disorders—A Scoping Review. Image Credit: Maxim Gaigul / Shutterstock.com

Study: Convergence of Artificial Intelligence and Neuroscience towards the Diagnosis of Neurological Disorders—A Scoping Review. Image Credit: Maxim Gaigul / Shutterstock.com

Background

Neuroscience principles have uplifted the AI field and vice versa. For example, neuroscience has helped researchers validate existing AI-based models. Likewise, biological neural networks have helped develop deep neural network architectures with several applications, such as text processing and speech recognition.

AI-based systems have helped neuroscientists test their hypotheses and analyze neuroimaging data, which, in turn, help with the early prediction and diagnosis of psychiatric disorders. Furthermore, these AI systems set up an interface with the brain, extract neurological signals, and generate commands that help devices, such as robotic arms, to move paralyzed human parts.

Computer scientists have drawn inspiration from reinforcement learning (RL) in human and animal models to develop algorithms for artificial systems, which alleviates the need for explicit instruction when learning complex strategies. RL has been successfully integrated into various robot-based surgery and gaming applications.

Overall, owing to the ability of AI to analyze complex data and extract hidden patterns, this technology appears to be the ideal choice for neuroscience data analysis.

Neuroscience inspired the design of AI systems

Similar to neurons in the human brain, artificial neural networks (ANNs) have several interconnected units that work in parallel. Likewise, the concept of Hebbian learning and brain structure helped Frank Rosenblatt design a simple ANN called perceptron in the 1950s.

Scientists subsequently modified perceptron networks to form multi-layer perceptron (MLP). In MLP, the output of one layer is fed to the next layer through the hidden layer until the last layer produces the expected results.

The human brain's working memory feature inspired scientists to design a recurrent neural network (RNN). The RNN architecture allowed the use of the past output as input to predict the subsequent output. Notably, one type of RNN known as the long short-term memory (LSTM) network can handle long-term dependencies, such as those that exist in text summarization.

Scientists found inspiration for convolutional neural networks (CNN) from the architecture of the brain's ventral visual stream. In RL, an intelligent agent like a computer understands the state of the environment to dictate the action. Moreover, the computer learns to repeat some tasks based on rewards and avoid others based on penalties.

In deep RL, a neural network provides a gradient-descent-based nonlinear mapping between the current states of the environment and all feasible actions. Although deep RL has enabled the machine recognition of sounds, text, and images, this technology consumes immense computing resources.

As an alternative, spiking neural networks (SNNs) are being developed, as they work like biological neurons and are more energy efficient. SNNs transmit information in the form of an electric signal to another artificial neuron when its membrane potential hits a particular threshold.

How is AI used to study neuroscience?

Several AI-assisted brain computer/machine interface (BCI) applications have been developed to help people with neuromuscular disorders, such as cerebral palsy or spinal cord injuries. Furthermore, AI has been widely used for controlling prostheses, as demonstrated by BrainGate, which is an implant that allows users to control limb movements.

Detecting neurological infections like meningitis is tedious due to their wide range of symptoms. However, AI-based approaches using various predictor variables such as cerebrospinal fluid (CSF) neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio (NLR) could predict the type of meningitis with high precision. AI is also associated with several benefits when applied to neuro-oncology, as it can potentially provide precise initial diagnoses and therapeutic options.

Conclusions

The current study highlighted the power of AI models in neuroscience, despite the exceptional size, scope, and architecture of brain data.

The researchers also discuss existing challenges and emphasize the need for a multidisciplinary approach using AI, neuroscience, and systems biology to create interlinked datasets. Such an approach could provide an in-depth understanding of structures and cognitive functions, thereby increasing the efficiency of AI models at the clinical assessment level.

Importantly, there remains an urgent need for new standards within existing regulations to assess the safety of AI systems.

Journal reference:
  • Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., et al. (2023). Convergence of Artificial Intelligence and Neuroscience towards the Diagnosis of Neurological Disorders—A Scoping Review. Sensors 23(3062). doi:10.3390/s23063062
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, March 15). Combining AI and neuroscience to detect and predict neurological disorders. News-Medical. Retrieved on September 12, 2024 from https://www.news-medical.net/news/20230315/Combining-AI-and-neuroscience-to-detect-and-predict-neurological-disorders.aspx.

  • MLA

    Mathur, Neha. "Combining AI and neuroscience to detect and predict neurological disorders". News-Medical. 12 September 2024. <https://www.news-medical.net/news/20230315/Combining-AI-and-neuroscience-to-detect-and-predict-neurological-disorders.aspx>.

  • Chicago

    Mathur, Neha. "Combining AI and neuroscience to detect and predict neurological disorders". News-Medical. https://www.news-medical.net/news/20230315/Combining-AI-and-neuroscience-to-detect-and-predict-neurological-disorders.aspx. (accessed September 12, 2024).

  • Harvard

    Mathur, Neha. 2023. Combining AI and neuroscience to detect and predict neurological disorders. News-Medical, viewed 12 September 2024, https://www.news-medical.net/news/20230315/Combining-AI-and-neuroscience-to-detect-and-predict-neurological-disorders.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
A reliable artificial intelligence-guided marker for early dementia prediction