A research group led by Professor Hiroaki SUZUKI and Takeshi HAYAKAWA from the Faculty of Science and Engineering at Chuo University, graduate student Zhitai HUANG, graduate students Kanji KANEKO (at the time) and Ryotaro YONEYAMA (at the time), together with Specially Appointed Assistant Professor Tomoya MARUYAMA from the Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, and Professor Masahiro TAKINOUE from the Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, has developed a novel and highly accessible technology for producing uniform Biomolecular Condensates using a simple, low-cost vibration platform.
This method builds upon the unique vibration control technology originally pioneered by Professor HAYAKAWA. It eliminates the need for expensive equipment or complex microfluidic circuits. By utilizing simple mechanical vibration, it achieves precise control over condensate formation within a single aqueous phase similar to the cellular environment, establishing a highly versatile technology.
The research group's novel study employs the Vibration-Induced Local Vortex (VILV) platform. This technology bypasses complex microfluidic pumping systems by employing stable micro-vortex arrays within a simple open device featuring a micropillar array. This is achieved using a standard piezoelectric vibrator. These vortices function as molecular traps, inducing uniform condensation by capturing and concentrating DNA molecules at their central regions. This approach enables condensation control within a single aqueous phase, preserving the activity of sensitive biomolecular components. The team successfully constructed highly uniform DNA condensates and demonstrated precise regulation of their stability through a low-frequency "maintenance mode."
Furthermore, the team successfully demonstrated the formation of complex patchy DNA condensate structures, highlighting the platform's capability to construct spatially organized biomaterials. Beyond this specific application, the versatility of the VILV platform is expected to contribute significantly to the fields of bottom-up synthetic biology and the fundamental study of cellular phase separation. We anticipate that this simple and accessible technology will be widely utilized as a standard tool for developing functional artificial cells and novel smart materials.
This research achievement was published in the online edition of the international academic journal Materials Horizons by the Royal Society of Chemistry on November 25, 2025 (UK time).
Source:
Journal reference: