Tousled-like kinases play a key role in suppression and activation of herpesviruses

NewsGuard 100/100 Score

Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) hide within the worldwide human population. While dormant in the vast majority of those infected, these active herpesviruses can develop into several forms of cancer. In an effort to understand and eventually develop treatments for these viruses, researchers at the University of North Carolina have identified a family of human genes known as Tousled-like kinases (TLKs) that play a key role in the suppression and activation of these viruses.

In a paper published by Cell Host and Microbe on Feb. 13, a research team led by Blossom Damania, PhD, of the Department of Microbiology and Immunology and member of the UNC Lineberger Comprehensive Cancer Center, found that suppressing the TLK enzyme causes the activation of the lytic cycle of both EBV and KSHV. During this active phase, these viruses begin to spread and replicate, and become vulnerable to anti-viral treatments.

"When TLK is present, these viruses stay latent, but when it is absent, these viruses can replicate" said Dr. Damania.

Patrick Dillon, a postdoctoral fellow in Dr. Damania's lab, led the study. Other co-authors included UNC Lineberger members Drs. Dirk Dittmer, Nancy Raab-Traub and Gary Johnson.

KSHV and EBV are blood-borne viruses that remain dormant in more than 95 percent of those infected, making treatment of these viruses difficult. Both viruses are associated with a number of different lymphomas, sarcomas, and carcinomas, and many patients with suppressed immune systems are at risk for these virus-associated cancers.

"The dormant state of these viruses is what makes it so hard to treat these infections and the cancers associated with these infections," said Dr. Damania.

Researchers have known that stimuli such as stress can activate the virus from dormancy, but they do not understand the molecular basis of the viral activation cycle. With the discovery of the link between these viruses and TLKs, Dr. Damania said that researchers can begin to look for the molecular actions triggered by events like stress, and how they lead to the suppression of the TLK enzymes.

"What exactly is stress at a molecular level? We don't really understand it fully," said Dr. Damania.

With the discovery that TLKs suppresses these viruses, Dr. Damania said that the proteins can now be investigated as a possible drug target for these virus-associated cancers. In its normal function in the cell, TLKs play a role in the maintenance of the genome, repairing DNA and the assembly of the chromatin, but there is a lot more to learn about the function of the TLKs, said Dr. Damania. One avenue of her lab's future research will investigate how TLKs function in absence of the virus.

"If we prevent this protein from functioning, and we combine this with a drug that inhibits viral replication, then we could have a target to cure the cell of the virus. If the virus isn't there, the viral-associated cancers aren't present," said Dr. Damania.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MONET: New AI tool enhances medical imaging with deep learning and text analysis