No two single tumor cells in breast cancer patients have same genome

NewsGuard 100/100 Score

Just as no two people possess the same genetic makeup, a recent study has shown that no two single tumor cells in breast cancer patients have an identical genome.

In fact, depending on the tumor cell, they grow at dramatically different speeds, according to a study led by Nicholas Navin, Ph.D., assistant professor in the Department of Genetics at The University of Texas M.D. Anderson Cancer Center in Houston. The study findings may have important implications for the diagnosis and treatment of breast cancer. The research may also assist in efforts to combat the development of chemotherapy resistant in breast cancer patients.

Navin's study results appeared in this week's issue of Nature and added to the understanding of "genomic diversity" within tumors. Large-group sequencing studies of breast tumors have identified many prevalent mutations, but have provided limited insight to diversity. Navin's team developed a new sequencing approach called Nuc-Seq, revealing that different subtypes of breast cancer displayed varied tumor diversity.

"We found that two distinct 'molecular clocks' were operating at different stages of tumor growth, said Navin. "Tumor cells from triple-negative breast cancer had an increased mutation rate, while tumor cells from estrogen receptor positive (ER+) breast cancer did not."

About 75 percent of breast cancers are ER+ and grow in response to the hormone estrogen. They are often treated with hormone therapy. Triple-negative breast cancers account for 15 to 25 percent of all breast cancers and generally do not respond well to hormone therapy or standard chemotherapy.

Navin's team developed Nuc-Sec as a single-cell genome sequencing method and applied it to study how cell mutations occur in both types of breast cancer. Combined with single-cell molecule sequencing, they were able to profile thousands of cells.

"A common problem in the field of single cell genomics is the inability to validate mutations that are detected in individual cells," said Yong Wang, Ph.D., a postdoctoral fellow in the Department of Genetics and first author on the study. "To address this problem we combined single-cell sequencing with targeted single-molecule deep sequencing. This approach not only validates mutations, but also measures the precise mutation frequencies of thousands of cells."

An important question in the field of chemotherapy is whether resistance mutations pre-exist in rare cells in the tumor, or if they emerge spontaneously in response to therapy.

"While this question has been studied for decades in bacteria, it remains poorly understood in most human cancers," said Navin. "Our data suggests that a large number of diverse mutations are likely to be pre-existing in the tumor prior to chemotherapy. Therefore, we expect that measuring genomic diversity will have prognostic value in identifying which patient will develop resistance to chemotherapy."

The study also indicated that genomic diversity may also have useful clinical applications for predicting tumor invasion, metastasis and poor survival in patients.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Lancet Commission on Breast Cancer: Transforming breast cancer care globally