Progression of different types of breast cancer influenced differently by tumor microenvironment

NewsGuard 100/100 Score

Our environment can have a major impact on how we develop, and it turns out it's no different for cancer cells. In work published today in Neoplasia, a team of researchers led by Associate Professor Mikala Egeblad at Cold Spring Harbor Laboratory (CSHL) found that two different mouse models of breast cancer progressed differently based on characteristics of the tumor microenvironment - the area of tissue in which the tumor is embedded.

The tumor microenvironment includes cells and extracellular molecules that support the tumor's growth. Egeblad and her team looked at two types of breast cancer driven by different mutations, and found very different microenvironments. One common factor was the presence of an extracellular protein called matrix metalloproteinase 9 (MMP9). It was expressed at similar levels in tumors from both breast cancer mouse models.

MMP9 previously has been linked to the progression of many types of cancers. When the researchers deleted the Mmp9 gene, they found that the absence of the MMP9 protein delayed tumor onset only in one mouse model, and had no effect in the other model.

Egeblad and her team found that whether MMP9 promoted cancer or not depended on the tumor microenvironment. Specifically, on the presence of another molecule that MMP9 is known to act on, called insulin-like growth factor binding protein 1 (IGFBP-1). "If IGFBP-1 is not there, MMP9 didn't really have an effect, but if it's there, then MMP9 has a role," says Egeblad. This suggests that IGFBP-1 interacts with MMP9 to promote tumor formation.

IGFBP-1 binds insulin-like growth factors (IGFs), which play a role in promoting cancer proliferation. "IGFBP-1 keeps the growth factors sequestered so they can't act on the cancer cells and can't make them proliferate," Egeblad says. "But if MMP9 is present, it degrades these IGFBPs and releases the growth factors." The release of the IGFs then accelerates cancer progression.

Egeblad and her team looked in human cancer databases to see if the interaction between MMP9 and IGFBPs predicted breast cancer prognosis in humans. "We found that IGF-binding proteins are associated with a good prognosis, but if MMP9 is also present, there's no longer good association with survival," Egeblad says.

The study's results have implications for anti-cancer drugs that target MMPs, and may explain why previous clinical trials using MMP inhibitors have failed, Egeblad says. "Maybe you can actually think about using these inhibitors if you better understand their biology," she says. The new study suggests that trials of MMP inhibitors could focus on patients whose tumor microenvironment contains IGFBPs, she says.

More broadly, the research suggests that it may not be enough to see if a particular drug target is present in a certain type of cancer; researchers may also need to look for the presence of the molecules that the drug target acts upon. "It complicates things, but I think biologically it makes a lot of sense. You really need to dig deep and understand mechanistically what the target does," Egeblad says.

The lab's next goal is to look more generally at the differences in microenvironments in different types of cancer. "What we're starting to learn now is that the microenvironments are different in different tumors, and that there is really a very intricate interplay between what's driving the mutations in cancer cells and the type of microenvironment they build around themselves," Egeblad says.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study unveils novel bladder cancer diagnostic model based on key mitochondrial genes