Lack of ARHGAP33 molecule causes neuropsychiatric disorders-related abnormal higher brain functions

A research group led by Osaka University and the University of Tokyo found that the intracellular protein trafficking is important for higher brain functions such as learning and memory. The research group showed that a molecule, ARHGAP33 regulates synaptic functions and behaviors via intracellular protein trafficking and that the lack of ARHGAP33 causes neuropsychiatric disorder-related impaired higher brain functions.

Takanobu Nakazawa, Specially Appointed Associate Professor at Osaka University, Masanobu Kano, Professor at The University of Tokyo, and Ryota Hashimoto, Associate Professor at Osaka University generated ARHGAP33 knockout (KO) mice to examine the function of ARHGAP33. The research group found impaired spine development and decreased miniature excitatory postsynaptic current frequency and amplitude in ARHGAP33 KO mice. The research group also found that ARHGAP33 KO mice show impaired working memory and prepulse inhibition, both of which related to neuropsychiatric disorders, such as schizophrenia.

Then, the research group examined the molecular mechanism behind the impaired synaptic functions and behaviors in ARHGAP33 KO mice and found that ARHGAP33 is localized to the Golgi apparatus to regulate intracellular protein trafficking of the Tropomyosin receptor kinase B (TrkB) receptor, a neurotrophin receptor, to synaptic sites. Neurotrophins play important roles in the formation and function of synapses. In ARHGAP33 KO mice, TrkB is not sufficiently transported to synaptic sites due to the lack of ARHGAP33, which eventually leads to impaired synaptic functions and behaviors.

Finally, the group found that the human ARHGAP33 is associated with schizophrenia.

The molecular pathophysiology of neuropsychiatric disorders is still not well understood, and the development of new antipsychotic drugs is imperative. The group' finding that the impaired intracellular protein trafficking leads to neuropsychiatric disorders-related abnormal higher brain functions has high impact on the fields of psychiatry, basic medical sciences, and pharmaceutical sciences. This study can potentially contribute to the development of new treatment strategies for neuropsychiatric disorders, such as schizophrenia.

Source: Osaka University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research highlights negative brain health outcomes among LGBTQ+ individuals