Yale researchers discover how tick-borne bacteria cause infection

Before infecting humans, tick-borne bacteria or viruses first have to get past a tick's defenses to colonize it. How this occurs is not well understood. To investigate, Yale researchers studied a model of the second-most-common tick-borne infection in the United States, human granulocytic anaplasmosis, which can cause headaches, muscle pain, and even death.

The researchers found that in ticks, the bacterium that causes the infection, A. phagocytophilum, triggers the expression of a particular protein. This protein alters molecules in the tick's gut, allowing the bacteria to enter and colonize the gut microbes.

"It's like a stealth warrior that indirectly changes the tick by using the tick's own defense system," said Erol Fikrig, M.D., chief of the Infectious Diseases Section at Yale School of Medicine and senior author of the study.

The unexpected finding could help scientists develop strategies to block A. phagocytophilum and other tick-borne agents that cause disease, say the researchers. Fikrig's team will explore the phenomenon in the bacterium that causes Lyme disease, and its work could have implications for other mosquito-borne infections, such as Zika and West Nile.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Innovative bacteria-based therapy shows promise against cancer