European project InSPECT develops miniature photonics spectrometers for tissue diagnostics

NewsGuard 100/100 Score

TISSUE DIAGNOSTICS SUCCESSFULLY TESTED

Today physicians are still severely hampered by the lack of precision of the needle tip location during a biopsy. Looking at lung cancers, 25% of the diagnoses suffer a false negative outcome through traditional biopsy methods. In the future, this can be avoided: for the first time, the European project InSPECT developed miniature spectrometers with integrated light sources enabling guided sensing.

By integrating an optical fiber inside a biopsy needle,  cancerous and non-cancerous tissue can be illuminated and differentiated by spectral analysis. Backscattered light is collected and led to a spectrometer that identifies spectral fingerprints like water, fat and hemoglobin. The different concentrations, collected by a second optical fiber, give real-time feedback to the physician during the medical intervention.

This method for tissue detection allows a fast and accurate diagnoses that can significantly accelerate the start of the cancer treatment, vital to increase the survival rate and recovery of each patient.

The photonics spectrometers pave the way for ultimate miniaturization of biophotonic and medical applications.  

Prof. dr. Theo Ruers, Professor of Surgical Oncology at the Netherlands Cancer Institute comments:  ​There is possibility to use those technologies in smart surgical devices so the surgeon knows exactly if he/she is cutting into tumorous or into normal tissue. Another application could be to develop implantable tissue sensors.

Miniaturized light sources and spectrometers at full spectrum

The DRS (Diffuse Reflectance Spectroscopy) systems today use a commercial halogen-type light source and two spectrometer devices, one for the visible and near infrared region of the spectrum (using silicon based sensors) and one for the short wave infrared region above 1 um wavelength (using indium-gallium-arsenide sensors).

Within the European Horizon 2020 project InSPECT, two new classes of spectrometer systems have been developed:

  1. a compact cubic-inch like broadband spectrometer based on diffractive optics, and
  2. a spectrometer system based on Si-based TriPleX waveguide technology integrating the spectrometer onto a photonic integrated circuit.

Further, a new class of broadband light source has been developed based on solid state laser excitation of luminescent materials. For this, new luminescent materials have been developed covering the spectral range from 400 to 1700 nm and a prototype light source incorporating these materials has been realized.

Eliminate delays in diagnose and treatment

Physicians will be able to perform a precise and instant diagnoses, with the compact cubic-inch broadband spectrometers that can be developed at high volume and low-cost.

The new generation of very compact and more cost-effective spectrometry solutions generate viable business models bringing spectral sensing inside the operating theatre, at general practitioners in their consultation rooms and to remote healthcare centers.

InSPECT: miniature spectrometers with integrated light sources for guided tissue sensing

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Evolving brain sizes from 1930 to 1970 could signal decreased dementia risk, researchers say