Researchers reveal role NAD+ molecule in turning on genes that make fat cells

NewsGuard 100/100 Score

Glucose is the energy that fuels cells, and the body likes to store glucose for later use. But too much glucose can contribute to obesity, and scientists have long wanted to understand what happens within a cell to tip the balance.

To solve this riddle, researchers at UT Southwestern's Cecil H. and Ida Green Center for Reproductive Biology Sciences examined specialized compartments inside the cell to reveal the role of a molecule termed NAD+ in turning on genes that make fat cells.

A Google search for NAD+ reveals that the molecule is found in every cell of the body and that some scientists believe that boosting its production may be tied to better health and to the slowing down of the aging process.

UT Southwestern biologists examined individual compartments inside cells that house NAD+ molecules to determine how they control genes that are essential to the fat-storing process - knowledge that could help in a wide range of ailments, including metabolic disorders, neurodegenerative diseases, inflammation and aging, and cancer.

"This compartmentalization ends up having profound effects on gene expression in the nucleus, as well as metabolism in the cytoplasm," (the jellylike substance outside the cell's nucleus), said Dr. W. Lee Kraus, Director of the Green Center and senior author on the research. "We found that these processes play key roles in fat cell differentiation and in cancer cells."

"The previous thinking in the field was that NAD+ was evenly distributed throughout cells and moved freely between different subcellular compartments," said Dr. Kraus, Professor of Obstetrics and Gynecology and Pharmacology. "We showed that NAD+ is actually compartmentalized - there are separate nuclear and cytoplasmic pools of NAD+ whose levels change under certain cellular conditions."

The research team's breakthrough is reported in the journal Science.

Accounting for the levels of NAD+ biosynthesis separately rather than in their totality helped increase the understanding of the biology involved, said first author Dr. Keun Ryu, a postdoctoral researcher in Obstetrics and Gynecology.

"Our study provides a new understanding of NAD+ biology," he said.

Dr. Kraus holds the Cecil H. and Ida Green Distinguished Chair in Reproductive Biology Sciences.

Scientific findings

UT Southwestern researchers have shown that compartmentalized synthesis of NAD+ integrates cellular information to control gene expression and maintain important biological processes required for metabolic health.

Researchers connected the cellular and molecular observations to the development of fat cells and the growth of cancer cells. Changes in the levels of NAD+ in the nucleus are important for adipogenesis.

Nuclear NAD+ supports PARP-1 activity in normal cellular processes, such as gene regulation and cellular differentiation.

Source: https://www.utsouthwestern.edu/newsroom/articles/year-2018/understanding-glucose.html

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals key gut microbiome differences in prediabetic patients