New process enriches omega-3 fatty acid content in dietary supplements

NewsGuard 100/100 Score

A new study, co-led by University of Cincinnati researchers, describes the development of a refining process that scientists deem a superior method to help produce better dietary omega-3 health and dietary supplements containing fish oil.

Fish oil is widely known to be an excellent dietary source of omega-3 polyunsaturated fatty acids (PUFAs) having positive effects on human health including heart and eye health, inflammation and bone density.

The novel process uses a new tool called a vortex fluidic device (VFD) developed by research collaborators at Flinders University of Australia. The process is successful in lifting the quality of active ingredients of the PUFAs in fish oil, says Harshita Kumari, the study's co-author and associate professor of pharmaceutical sciences at UC's James L. Winkle College of Pharmacy.

The study now appears in Nature Papers Journals Science of Food.

Researchers applied the VFD-mediated encapsulated fish oil to enrich the omega-3 fatty acid content of apple juice.

This novel process enriches the omega-3 fatty acid content of apple juice remarkably without changing its taste."

Harshita Kumari,Study's Co-author and Associate Professor, Department of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy

Kumari, adding that two common consumer complaints regarding fish oil supplements is the taste and odor. Liquid omega-3 oils can also break down over time when exposed to oxygen which leads to degradation.

Compared to regular homogenization processing, Kumari says the device can raise PUFA levels and purity by lowering oxidation and dramatically improving shelf life. Natural bioactive molecules, also used in processing, reveal that the fish oil medium can absorb flavonoids and other health supplements.

In addition, Kumari and other researchers, including her UC doctoral student Marzieh Mirzamani, developed a technique for studying how this process occurs in the VFD in real time through small-angle neutron scattering.

Research endeavors such as this are an example of UC's innovation agenda, an integral element of Next Lives Here, the University of Cincinnati's strategic direction.

The study was published in partnership with Guangzhou University, the University of Cincinnati, Flinders University and the Australian Nuclear Science and Technology Organisation (ANSTO).

The project received funding from the Australian Research Council and was supported by ANSTO and the University of Cincinnati.

Source:
Journal reference:

He, S., et al. (2020)Vortex fluidic mediated encapsulation of functional fish oil featuring in situ probed small angle neutron scattering. npj Science of Food. doi.org/10.1038/s41538-020-00072-1.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Eating your way to less stress: Mediterranean diet linked to lower stress in Korean baby boomers