UH researchers receive grant for developing new imaging technique to peer into ribosomes

Two University of Houston researchers are developing a type of spectroscopy to help understand how ribosomes make proteins deep within cells, the discovery of which could potentially guide drug design to treat cancers and viral infections. Spectroscopy measures the interaction between light and matter to determine characteristics and volume of cellular matter.

In cellular biology, ribosomes are work horses, veritable factories inside cells, whose job is to make proteins. The instructions that tell the ribosome how to work come from messenger RNA, which contains codes on making proteins, actually called codons. One mistake in defining an upstream codon will be propagated to the rest of the messenger like the domino effect, which spells disaster to the cell.

During protein assembly, the ribosome must be precise in moving from one codon to the next, a process known as translocation. On the other hand, many viruses contain genomic sequences that are designed to slip on certain codons to re-define the protein composition after that codon, in a process called frameshifting.

We are developing a multiplexed super-resolution force spectroscopy to investigate high-fidelity and frameshifting translocations."

Yuhong Wang, professor of biology and biochemistry

Wang and Shoujun Xu, professor of chemistry, received a $1.2 million grant from the National Institute of General Medical Sciences to support their research.

"We will measure the power strokes from elongation factors (EF-G) and their mutants, which are the enzymes to interact with ribosome during translocation, on normal and viral mRNA sequences and in the presence of antibiotics," said Xu. "Our research will provide new methodology that can be applied to other biological systems."

Scientifically, the team is building a new model of ribosome translocation with sub-codon steps and providing potential drug targets for related diseases.

"For example, by tuning down and up the EF-G's activity in cancer cells and low-functioning neuron cells, the diseases can be treated, anti-viral drugs can be designed that only target the specific viral frameshifting motifs," said Wang.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Diagnostic performance of GPT-4 in analyzing radiology findings from brain tumors