Study analyzes how immunological memory gets generated and maintained

NewsGuard 100/100 Score

Scientists have long sought to better understand the human body's immune responses that occur during various diseases, including cancer and inflammatory diseases.

In a recent study at the University of Missouri, Emma Teixeiro, an associate professor in the MU School of Medicine, and her team analyzed how immunological memory – the memory the body's immune system retains after an infection or vaccination that helps protect against reinfection – gets generated and maintained, as well as the role inflammation plays in shaping that immunological memory.

"Our immune system defends us from disease, but it is a very complicated system with many interactions occurring, and if things get dysregulated, it may actually play a role in causing disease," said Teixeiro, who works in the NextGen Precision Health Institute on MU's campus. "So, our research focuses on better understanding how these immune responses can be generated and controlled, specifically by looking at the critical role T cells play, as T cells help protect the body from infection and may play a role in attacking cancer."

Using a mouse model, the researchers created various strains of pathogenic bacteria that increased levels of inflammation through the stimulator of interferon genes – or STING – proteins inside of T cells. While many scientists assumed this increase in inflammation would result in a stronger immune response and therefore stronger immunological memory, Teixeiro and her team found the opposite: immunological memory was reduced.

Some scientists in the field believe STING activation may be targeted to improve cancer vaccines or immunotherapies, so gaining a basic understanding of all the interacting mechanisms at play is critical to reduce the chances of unintended consequences or harmful side effects. We want to better understand how to regulate immunological memory, which has implications for potential vaccines or immunotherapies that trigger T cells in a way that hopefully boosts long-term memory, so our bodies are protected from disease over time."

Emma Teixeiro, Associate Professor in the MU School of Medicine

While her research is fundamental in nature, Teixeiro's findings have the potential to contribute to the development of more effective treatments to help patients suffering with cancer, chronic obstructive pulmonary disease (COPD), STING-associated vasculopathy with onset in infancy (SAVI), asthma and other chronic inflammatory syndromes.

"The pursuit of knowledge is what drives my curiosity as a scientist," Teixeiro said. "While there are still more questions to answer, this research is a small step in the right direction, and I am proud to be a part of it."

"STING controls T cell memory fitness during infection through T cell intrinsic and Indoleamine-pyrrole 2,3-dioxygenase (IDO) dependent mechanisms" was recently published in PNAS. Coauthors on the study include Michael Quaney, Curtis Pritzl, Rebecca Newth, Karin Knudson, Vikas Saxena, Caitlyn Guldenpfennig, Diana Gil, Chris Rae, Peter Lauer, Mark Daniels and Dezzarae Luera.

Source:
Journal reference:

Quaney, M.J., et al. (2023) STING controls T cell memory fitness during infection through T cell-intrinsic and IDO-dependent mechanisms. PNAS. doi.org/10.1073/pnas.2205049120.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Pregnant women show significant immune system changes linked to gut microbiome