Flecainide, encainide drugs increase risk of sudden cardiac death

NewsGuard 100/100 Score

Scientists have discovered that a drug which increases the risk of sudden cardiac death interacts with mistranslated protein-coding genes present in heart muscle.

The cardiac drug flecainide was developed to prevent and treat serious arrhythmias in the ventricles - the main pumps of the heart. These cause very rapid heart rates which can be lethal if unchecked. However in clinical trials, flecainide, and its sister molecule encainide, were reported to more than double the risk of sudden cardiac death.

Joint work by researchers in the Department of Chemistry and Warwick Medical School at the University of Warwick, and at the SEEK drug discovery group through subsidiary Tangent Reprofiling Limited, is now allowing insight into how cardiac death risk might be increased by these drugs. The method involves persuading viruses to provide a read-out on their surface of proteins related to human heart disease.

Genes that code for proteins, including those from the heart, may be read differently to normal - by starting at a different "letter" in the genetic code - these are called alternative reading frame (ARF) proteins, a bit like a very simple old cipher.

In experiments just published in the Royal Society of Chemistry journal Chemical Communications, the researchers show that flecainide appears to interact with just such an ARF protein, the "normal" version of which is crucial to heart function. This opens the way to further research that may illuminate the positive and negative elements of flecainide's action.

Paul Taylor, Associate Professor in Organic Chemistry, commented "Genes provide the code for cells to make proteins. This new research indicates that flecainide is able to interact with an unexpected translation of the gene coding for the protein - myosin regulatory light chain - a crucial component in the contraction of heart muscle fibres."

Associate Professor of Chemistry Andrew Marsh added "The work is particularly important as it represents a new way to uncover interactions of drugs such as flecainide with ARF proteins. The fuller biomedical significance of these unusual, 'mistranslated' proteins is only just becoming recognised."

Dr Suzanne Dilly, Head of Chemical Biology at SEEK, said " I am delighted to see publication of these important results, which were enabled by sharing of expertise and technology between an excellent academic team and our drug discovery group."

Professor of Clinical Pharmacology and Therapeutics Donald Singer said "Adverse effects of drugs can be very serious. Our work shows an unexpected consequence of adverse effects of a drug: providing clues to new causes for disease and new ideas for treatments. There is clear potential to apply these methods to understanding unexplained risks of other medicines".

Source: http://www2.warwick.ac.uk/newsandevents/pressreleases/misread_heart_muscle

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds microdosing LSD leads to longer sleep: Insights from a controlled trial