Researchers find key step in understanding genetic mechanism of plants' environmental adaptability

NewsGuard 100/100 Score

A fundamental question pursued by plant scientists worldwide for the past decade has been answered by researchers led by the University of Sydney in Australia.

"Our findings have major implications for our understanding of how plants adapt to the environment. What's more, they indicate that similar processes occur in humans so the findings should be embraced by medical researchers and agricultural scientists alike," said Dr Rodrigo Reis, lead author of the findings published this month in Nature Plants.

Dr Reis is from the Faculty of Agriculture and Environment at the University of Sydney.

"Our research provides crucial insights into how we might improve the environmental adaptation of plants, including the yields of crop species. It also has the potential to advance gene therapies that are being researched to address ageing and diseases, including cancer."

Although our different cells and organs have exactly the same set of genes, the ability of any organism to turn certain genes on or off within each cell is central to the functioning of the organism. It defines the identity of cells, tissues and organs, and controls responses to the environment.

An important way in which this process is regulated is by tiny RNA molecules, called 'microRNAs'. Specific microRNAs control specific genes or sets of genes.

"You could describe microRNAs as 'master controls'. They have the capacity to switch specific genes on and off, determining whether the proteins that these genes code for are present or not. We call this the control of gene expression," said Dr Reis.

"It's clear that the loss of microRNA control of certain genes can result in cancer and a range of other pathologies".

"The tricky bit in gene expression control is that sometimes the messenger RNA (mRNA) that code for specific proteins, have to be thoroughly cleared from the cells when their task is completed. In contrast, other cells might need to keep them handy so that they can be accessed quickly if needed, for example if cells are damaged by intense sunlight."

The researchers discovered that the microRNA mechanism that controls whether a particular cell destroys or simply represses the mRNA molecules in plants relies on 'switcher' genes.

"The presence of these genes 'switches on' one of the two options, destruction or repression. If certain cells produce one switcher (DRB2) then that keeps the gene products in reserve, ready to use in an emergency. If DRB2 is not present but another one, DRB1, then the gene products are destroyed," said Dr Reis.

"Because the basic microRNA system is present in both plants and animals, similar switchers are likely to exist in humans. Based on our findings, we've indicated their likely identities in the article."

Now that the researchers have found the switchers, it will be possible to manipulate them. Regulating the switcher mechanism should allow them to boost the capacity for environmental adaptation without interfering with development. This has clear applications for plants affected by climate change.

"The discovery and manipulation of switchers in humans could also make gene therapy more specific, with fewer side effects."

The researchers worked collaboratively for three years analysing the plant model Arabidopsis to reveal the underlying mechanism.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study identifies genetic variants with profound impact on obesity risk