Study shows how high glucose damages the vascular system

NewsGuard 100/100 Score

Diabetes, which is marked by increased glucose levels in the body, eventually leads to certain complications, including cardiovascular disease. Now, a new study shows a cellular connection between diabetes and blood vessel narrowing that boosts one’s risk of chronic and potentially fatal health conditions, including stroke and heart disease.

A team of researchers at the University of California – Davis Health has found a link between diabetes and vascular disease, one of its major complications.

The researchers hope that the findings of the study can help formulate new treatments for diabetes, beyond just controlling and monitoring blood sugar levels. The cellular level connection may help new treatments target the molecular source of high blood sugar’s damaging effects on the blood vessels.

The Navedo lab team is identifying how diabetes increases the risks of serious health conditions such as heart disease and stroke. From left to right are Debapriya Ghosh, Gopireddy Reddy, Arsalan Syed, Manuel Navedo, Madeline Nieves-Cintrón and Thanhmai Lee. Image Credit: UC Regents / UC Davis Health
The Navedo lab team is identifying how diabetes increases the risks of serious health conditions such as heart disease and stroke. From left to right are Debapriya Ghosh, Gopireddy Reddy, Arsalan Syed, Manuel Navedo, Madeline Nieves-Cintrón and Thanhmai Lee. Image Credit: UC Regents / UC Davis Health

Protein kinase A increases calcium channel activity and constriction of blood vessels

In the past, the team conducted a similar study, analyzing hyperglycemia or high blood glucose and how it triggers an enzyme known as protein kinase A (PKA), which in turn, boosts calcium channel action, resulting in blood vessel constriction.

"This was a surprise since PKA is typically associated with blood vessel widening and wasn't really on our radar. We wanted to understand the molecular processes that created this opposite reaction,” Manuel Navedo, Professor of Pharmacology at UC Davis Health, said.

But, the mechanism by which glucose activates PKA remains unclear, the researchers noted. In the study published in The Journal of Clinical Investigation, they showed that elevating extracellular glucose triggers cyclic adenosine monophosphate (cAMP), second messenger that’s vital for biological processes and cellular messenger with a critical role in vascular cell function, production in arterial myocytes, which was particularly dependent on adenylyl cyclase 5 (AC5) activity.

To land to their findings, the team performed experiences on the impact of elevated glucose on arterial cells and cerebral blood vessels, which control and maintain blood flow in the vessels. The researchers tested these on laboratory mice, two mouse models of diabetes and a genetically modified mouse.

Specifically, they focused on the connection between PKA and adenylyl cyclase (AC), an enzyme involved in cyclic AMP (cAMP) production. They found that AC5 facilitated cAMP and PKA activation, stimulating increase calcium channel activity and subsequent blood vessel vasoconstriction. Also, they discovered that AC5 was crucial for blood vessel vasoconstriction during diabetes.

Vascular complications in diabetes

Vascular complications during diabetes are the main risk factors for cardiovascular illnesses, such as hypertension, heart disease, and stroke. These complications are often associated with increased blood glucose levels or hyperglycemia.

The team anticipates doing further tests on the impact of the AC5 chain reaction in humans. The study may pave the way for new treatment approaches that target the reduction of vascular complications of diabetes.

There are many patients in clinics and hospitals battling diabetes and its complications, particularly those which are damaging to the vital organs of the body, including the heart, kidneys, and the brain. The study on vascular effects of elevated blood sugar levels in the cellular level could open the doors for new treatment modalities to combat diabetes and cardiovascular diseases.

What is diabetes?

Diabetes is a condition that happens when the blood glucose, also dubbed as blood sugar, is too high. Insulin, a hormone produced and released by the pancreas, aids in glucose absorption in the cells to be used for energy.

In diabetes, the pancreas doesn’t produce enough insulin or doesn’t produce insulin at all. As a result, glucose stays in the blood. Though glucose is the main source of energy in the body, if it won’t enter the cells and stays in the blood, it can cause detrimental effects to the different organs in the body.

In the long run, too much glucose or sugar in the blood can lead to complications, including kidney disease, cardiovascular disease, neuropathy, and vision loss, among others.

Worldwide, the number of people with diabetes increased from 108 million in 1980, to a staggering 422 million in 2014. The number has increased over the past years, especially in middle-and low-income countries.

In 2016 alone, about 1.6 million deaths were linked to diabetes, and another 2.2 million deaths were attributed to high blood glucose in 2012.

Journal reference:

Syed, A., Reddy, G., Ghosh, D., Prada, M. P., Nystoriak, M., Morotti, S., Grandi, E., Sirish, P., Chaimvimonvat, N., Hell, J., Santana, L., Xiang, Y., Nieves-Cintron, M., and Navedo, M. (2019). Adenylyl cyclase 5–generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. The Journal of Clinical Investigation. https://www.jci.org/articles/view/124705

Angela Betsaida B. Laguipo

Written by

Angela Betsaida B. Laguipo

Angela is a nurse by profession and a writer by heart. She graduated with honors (Cum Laude) for her Bachelor of Nursing degree at the University of Baguio, Philippines. She is currently completing her Master's Degree where she specialized in Maternal and Child Nursing and worked as a clinical instructor and educator in the School of Nursing at the University of Baguio.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Laguipo, Angela. (2019, July 22). Study shows how high glucose damages the vascular system. News-Medical. Retrieved on April 27, 2024 from https://www.news-medical.net/news/20190722/Study-shows-how-high-glucose-damages-the-vascular-system.aspx.

  • MLA

    Laguipo, Angela. "Study shows how high glucose damages the vascular system". News-Medical. 27 April 2024. <https://www.news-medical.net/news/20190722/Study-shows-how-high-glucose-damages-the-vascular-system.aspx>.

  • Chicago

    Laguipo, Angela. "Study shows how high glucose damages the vascular system". News-Medical. https://www.news-medical.net/news/20190722/Study-shows-how-high-glucose-damages-the-vascular-system.aspx. (accessed April 27, 2024).

  • Harvard

    Laguipo, Angela. 2019. Study shows how high glucose damages the vascular system. News-Medical, viewed 27 April 2024, https://www.news-medical.net/news/20190722/Study-shows-how-high-glucose-damages-the-vascular-system.aspx.

Comments

  1. David Schott David Schott United States says:

    You completely missed insulin resistance as the cause of type 2 diabetes.does this research apply only the type 1 or is it also relevant to type 2.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Exploring the benefits of blueberries: Studies link extract to reduced cognitive aging